
HLA TESTBED DECLARATION
MANAGEMENT EXPERIMENTS

Jeff Olszewski
Larry Mellon

Science Applications International Corp.
jolszewski@std.saic.com,

lmellon@std.saic.com

Richard Briggs
Virtual Technologies Corp.

rbriggs@virtc.com

KEYWORDS
HLA, Filter Space, Filters, RTI, Simulation, FCS

ABSTRACT
This paper examines the performance and usability of
filter spaces, the proposed interface for HLA
Declaration Management. The purpose of using filter
spaces is to reduce the amount of unnecessarily
reflected data between simulations in an HLA
federation. Filter spaces allow simulations to request
only that data which is relevant to their operation.
The experiment conducted studies the performance
characteristics of the RTI when the number of entities
per host and number of hosts are varied. It is
hypothesized that using filter spaces will significantly
increase the scalability of a federation. The primary
performance metrics used to evaluate scalability are
packet flow between hosts and the number of reflected
attribute values at remote simulations. The tests
were performed in the HLA Testbed at the Integration
& Evaluation Center of the Army's Topographic
Engineering Center (TEC) using a militarily realistic
scenario. The experiments were conducted using a
two-dimensional geographic filter space, where
entities subscribed to other entities and events which
were within a maximum of two times their sensor
range. Results of the experiment are presented and
discussed.

1.0 INTRODUCTION
An important problem in distributed simulation is
the large volume of unwanted network traffic which is
received by simulation hosts. In a typical DIS
simulation, host traffic is broadcast onto the network,
requiring all hosts to receive the updates for all
entities in the simulation. It is likely that many of
the hosts in an exercise have no requirement to
receive updates for all simulated entities. For
example, they may only require updates from a
particular region of the battlespace, or only require
updates about a particular class of entity. Thus a
potential exists for a large reduction in traffic by
allowing entities to only receive data for which they
express an interest.

In the DMSO High Level Architecture, the proposed
mechanism for performing this interest expression is
called Declaration Management1. Declaration
Management uses a filtering process to prevent
unwanted network traffic from reaching a host; this
filtering mechanism is currently implemented in the
RTI v. 0.33e as filter spaces. When a federation
wishes to use filter spaces, it is required to define an
n-dimensional space, with each dimension
corresponding to an attribute which will be used to
filter out unwanted data. Federates subscribe to the
regions of the filter space which are of interest to
them, and the RTI insures that they only receive data
that updates that region of the filter space.

It is important to note that because they provide
traffic reduction, filtering schemes allow the scale of
an exercise to increase. If the filtering mechanisms
used do not place a large burden on the host
computer, system resource gains from filtering can
permit the number of simulated entities to increase.
This topic is discussed further in Mellon[5], which
provides an overview of filtering techniques and
scalability issues as they relate to the HLA.

The complete Declaration Management API can be
found in [1], while filter spaces are described in more
detail by Van Hook[2]. Also, a discussion of grid-
based relevance filtering can be found in Van Hook
[3].

This paper describes a series of HLA Declaration
Management experiments which were conducted to
evaluate the use of filter spaces in the RTI. These
experiments were conducted at the HLA Testbed at
the Integration and Evaluation Center (IEC) in Fort
Belvoir in Virginia. The purpose of these
experiments was not intended to yield precise results,
but rather to get a sense of the trends present in the

1 In version 1.0 of the HLA Interface Specification,
this is called Data Distribution Management.

use of filter space and to get an indication of how well
the filter space approach will scale in large
simulations. The test process has been automated
such that experiments are repeatable and follow-up
experiments can be conducted.

2.0 ANALYSIS
2.1 Objectives
The objectives of the declaration management
experiments are to address the following questions
associated with the use of filtering in the RTI:
• What is the baseline cost (no filtering)?
• What is the best case cost (perfect filtering)?
• What is the host loading caused by the filtering?
• What is the host loading saved by filtering?
These experiments are intended to assess the
performance implications of the current RTI
implementation, and are intended to provide a basis
for the evolution of RTI development.

The type of filtering used in the experiments was
data-based filtering. In the data-based filtering
approach, each federate indicates to the RTI the
classes of objects for which it can provide updates and
which classes or attributes it is interested in
receiving. Two filter specs were submitted to the
RTI for each federate - one for publication and one for
subscription. The filter spec defines a filtering
scheme which includes:
• a set of extents
• a set of ranges for those extents
The filter space used in the experiment was a two-
dimensional geographic filter space.

Since the focus of the experiments was to evaluate
filter spaces, it was desirable to use a simulation with
deterministic behavior and near-constant system
resource requirements. The RTI Analysis Tool
(RAT) was constructed for this purpose. The RAT
essentially plays back an exercise event log in real-
time. During a typical execution, the RAT
consumes 65% of the CPU on a Sun Ultra 2.

The scenarios used by the RAT were constructed in a
version of ModSAF which was enhanced to output
scenarios which can be input to the Scenario Analysis
Tool (SAT). The SAT executes the ModSAF
scenario and generates an output file which is read by
the RAT.

The RAT communicates with the RTI using the
Federation Common Software, which encapsulates
the RTI API. The FCS provides an object-oriented
framework which automates and simplifies federate
operations, such as federation initialization, and
translation between simulation and federation data
representations. The FCS is described in detail in
Briggs and Miller[4]. The FCS source code was

instrumented to permit each federate to generate a
measures-of-performance(MOP) database on the local
host. This data base contains a variety of statistics,
including resource utilization for the RTI and RAT
processes, federation level latencies, and multicast
group usage. After the federation execution is
destroyed, the MOP databases for each federate are
collected to a central host for post-processing and
analysis.

Another goal of the experiment was to eliminate as
much possible variability due to system hardware
used. For this reason all federate simulations were
run on identically configured Sun Ultra 2 systems.

3.0 HYPOTHESES
Before stating the hypotheses for the experiments,
some performance metrics will be defined.

3.1 Performance Metrics.
To compare the performance of the federates in the
experiment a few metrics were devised. The
reduction in the amount of reflected data passed to a
federate was one metric used to examine the
effectiveness of filter spaces. This savings, S, for a
given federate, f, is defined as

S u u rf i

i

f

i

i f

n

f= +

 −

=

−

= +
∑ ∑

1

1

1

where n=the number of federates in the federation (n ≥
2), ui= the number of updates issued to the RTI by
federate i, and rf=the number of reflections received by
federate f. Normalizing Sf into the range 0..1 allows
one to compare federates:

S
S

u u

fnorm
f

i

i

f

i

i f

n
=

+

=

−

= +
∑ ∑

1

1

1

For federates not using filter spaces, Sf should be
close to zero, because federate f should receive
reflections for all of the other federates’ updates. Note
that if the result is exactly zero, all updates sent were
reflected. Because packet drops can occur, this value
is likely to be greater than zero. Dropped packets are
not taken into consideration by this metric. For
federates using filter spaces, Sf should be positive, as
filtering is expected to reduce the number of
reflections sent to a particular federate.

To evaluate the impact on host resources as the
number of entities increase, standard Unix system
monitoring utilities (ps, netstat, etc.) were used.

ModSAF
Scenario

Generation

Scenario
Analysis Tool

(SAT)

SAT format
ModSAF
Scenario

SSF
Output
File

MOP
Database

RTIAnalysis
Tool (RAT)

Federation Common
Software (FCS)

Sun Ultra2
SSF
Output
File

MOP
Database

RTIAnalysis
Tool (RAT)

Federation Common
Software (FCS)

Sun Ultra2

RTI

SSF
Output
File

MOP
Database

RTIAnalysis
Tool (RAT)

Federation Common
Software (FCS)

Sun Ultra2

...
(8 total)

Exercise
Manager

Configuration
Management

System

MOP DB
Post-processor

Figure 1. Filter Experiment Configuration.

3.2 Hypothesis 1.
Two-dimensional geographic filtering will reduce the
amount of reflections to a federate.

3.3 Hypothesis 2.
Host performance will decrease as the number of
simulation entities using filter spaces increases.

Figure 2. Experiment scenario. Blue units (left) are
M1 tank units, red units are T72M tank units (right).

4.0 SYNTHESIS
4.1 Experiment Configuration.
The configuration used in all experiments is depicted
in figure 1.

4.1.1 Hardware Configuration.
All software used was run on Sun Ultra 2 systems
running Solaris 2.5. Each machine had two 168
MHz UltraSparc processors and 256 MB of RAM.
They were networked using a 10-BaseT ethernet.
Although an ATM network is available in the HLA
Testbed, it was not used as the version 0.33e of the
RTI would not work properly with the HLA
Testbed’s ATM drivers.

4.1.2 Scenario Construction.
The scenario used in all experiments is depicted in
Figure 2. In the figure, four red tank units (T-72M’s)
are advancing from the east on four blue tank units
(M-1’s). The red and blue forces are initially 10km
apart, and their paths begin to cross approximately 13
minutes into the run. The total scenario execution
time is approximately 21 minutes.

For all experiment exercises which used filter spaces,
a 7 X 7 filter space was defined. Since each grid cell
is mapped to a multicast group in the underlying
filter space implementation, the total number of
multicaast groups possible using the 7 X 7 filter
space is 49. This total amount of multicast groups
was chosen as a result of some prior experimentation
into multicast traffic filtering on Unix workstations.
It was found that beyond a certain threshold number
of multicast groups, Unix workstations did not
perform multicast traffic filtering on the network
hardware, but instead would require a kernel interrupt
to decide if the host had joined a particular group.
In the 0.33e version of the RTI, it was not possible
to disable the filter space code Thus for the purposes
of comparing executions with and without filtering,
the non-filtering runs actually use a 1 X 1 filter space.
This “null filter” has the desired effect of allowing all
data to pass through the RTI, although with the
added processing overhead of executing the filter
space code.

The scenarios laydowns and mission assignments
were performed in ModSAF, and processed through
the SAT synthetic workload tool. The resulting
SSF output file is essentially an event log, which is
processed by the RAT to provide deterministic
stimulation to the RTI. The SSF output file
contains entity state updates, interactions (fires and
detonates), and communications updates (signal and
emission data). For the experiments described
below, only the entity states update data was used by
the RAT.

4.1.2 Data Collection.
Instrumentation of the federate in the FCS was
implemented with the primary goal being to create a
data collection system which would be as non-
intrusive as possible. Instead, measures-of-
performance data is written to a database contained on
the local disk. Storing the database locally eliminates
the load on the network which would be caused by
the sharing of federate MOP data. Time discrepancies
between MOP databases are eliminated by using the
HLA Testbed’s GPS clock synchronization, which
provides µsec accuracy. Additionally, writes to the
MOP database are buffered to reduce the frequency of
disk accesses in the FCS code. These writes are
performed on a separate thread of execution in the
FCS, so that normal FCS operation is not impacted.
After an exercise, the MOP data is collected on a
central host and post-processed.

Title: MOPArch.eps
Creator: Canvas 3.5
CreationDate: Wed, Aug 14, 1996 3:44 AM

Figure 3. MOP Data Collection Architecture

4.2 Factors and Parameters.
Table 1 lists the factors(things which were varied) in
the experiment. Each federate consisted of a single
host machine.

Factor Settings
No. of Hosts (federates) 2, 4, 8
No. of Entities 50, 100, 150
Filter Spaces Off, On

Table 1. Experiment Factors.

Table 2 summarizes some of the important
parameters in the experiment.

Parameter Setting
Hardware Platform Sun UltraSparc 2
Network Hardware 10-base T Ethernet
RTI Version 0.33e

Orbix Version 1.3
Federate Simulations RAT
RAT run mode realtime, no interactions
Filter space 2D Geographic
Sensor Range 1.5km
Playbox 10km X 10km
Entity Types M1(blue forces), T72M

(red forces)
Table 2. Experiment Parameters.

4.3 Experiments Performed.
4.3.1 Experiment 1 - Federate/Host Scaling
The purpose of this experiment was to evaluate
hypothesis 1 by examining filter space behavior with
a varying number of hosts. The entities were divided
among the hosts as listed in table 3 by equally
dividing the units.
The complete set of data for the eight federate runs
was not available at the time of this writing.

4.3.2 Experiment 2 - Entity Scaling
The purpose of this experiment was to evaluate
hypothesis 2. The desired total number of entities
was achieved by varying the number of entities per
aggregate unit, rather than by adding units. The
number of entities on each force was equal in all cases
(24, 48, 74).

5.0 VALIDATION
5.1 Federate/Host Scaling Results
Figure 3 plots the total number of reflections and
updates for each federate in an exercise. Results are
shown for a 100 entity, two federate exercise and a
100 entity, four federate exercise. In each plot, a
“total reflections” bar indicates the total number of
reflection messages which were received by that
federate. For a given federate, the “total updates” bar
indicates the total number of updates issued to the
RTI by all other federates. For example,. the total
number of updates for federate 2 is equal to the sum of
the total number of updates for federates 1, 3, and 4.
As described in section 3.1, these difference between
reflections and total updates should be close to zero
when no filtering is performed.
The plots on the left show the behavior of the RTI
with no filtering (this is given as a baseline), while
the plots on the right show the effects of filter spaces.
For the plots on the right, S1=.389 and S2=0.495 in
the two federate exercise, while S1=.599, S2=.290,
S3=.310 and S4=.480 for the four federate exercise. In
all cases, use of filter spaces caused a reduction in the
number of reflections to the federate.

In the four federate exercise, it is clear that a
significant number of packets are dropped for federate

one, in both the filter space and non-filter space runs.
In all experiments federate one was running the RTI
executive in addition to the RAT and local RTI
clients.

Updated and Reflected Data,
No Filter Spaces

0

2000

4000

6000

8000

10000

12000

14000

1 2

Federate

Total No. of Updates,

Reflections

Total Reflections

Total Updates (All
Other Federates)

Updated and Reflected Data,
Using 2D Filter Spaces

0

2000

4000

6000

8000

10000

12000

14000

1 2

Federate

No. of Updates,
Reflections

Updated and Reflected Data,
No Filter Spaces

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4

Federate

No. of Updates,
Reflections

Updated and Reflected Data,
Using 2D Filter Spaces

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4

Federate

No. of

Updates, Reflections

Figure 3. Updated and reflected data for two and four
federate exercises.

5.2 Entity Scaling Results.
In this experiment, the configuration of Figure 1 was
tested using a varying number of simulation entities.
As mentioned above, this test was performed to get a
sense of the trends in RTI resource utilization as the
number of entities is increased.
The results from these tests were not as conclusive as
those for experiment 1. During runs of the 150 entity
tests, the system would lock up early on in the
exercise, which prohibited more extensive testing.
Some sense of the trends in CPU and memory usage
can be seen in figures 4 through 6. The most notable
trend is the rapid increase in memory consumption
by the dm_local_server process, which is presumed
to have a memory leak in 0.33e of the RTI. This
problem is underscored by Figure 7, which plots
memory usage vs. time for each RTI process and the
RAT for a single federate in the 100 entity exercise.
In this plot the memory usage samples were taken at
five second intervals, and thus the value on the x axis
must be multiplied by five to get the exercise time.
Similar behavior was observed for other federates.

Mean CPU Usage for RTI Processes

0.001

0.01

0.1

1

10

50 100 150

No. of Entities

Mean % CPU Usage

DFOM_server

distro_mgr_server.lo

dm_local_server.exe.

dm_local_server

fed_ex_server

owner_mgr_server

rti_amb_server

rti_exec_server

sim_agent_server

Figure 4. RTI CPU Usage by process.

Memory Usage for RTI Processes(Kilobytes)

0

2000

4000

6000

8000

10000

12000

50 100 150

No. of Entities

Mean Memory Usage (Kilobytes)

DFOM_server

distro_mgr_server.lo

dm_local_server.exe.

dm_local_server

fed_ex_server

owner_mgr_server

rat.fspace

rti_amb_server

rti_exec_server

sim_agent_server

Figure 5. RTI Memory Usage.

Memory Usage for RTI Processes(% of Total System
Memory)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

50 100 150

No. of Entities

Mean % Memory Usage

DFOM_server

distro_mgr_server.lo

dm_local_server.exe.

dm_local_server

fed_ex_server

owner_mgr_server

rat.fspace

rti_amb_server

rti_exec_server

sim_agent_server

Figure 6. RTI Memory usage as a percentage of total
system memory.

RTI ProcessMemory Usage (100 entities, using 7 X 7
geographic filter space)

0

2000

4000

6000

8000

10000

12000

1 21 41 61 81 101 121 141

Update No.

Memory Usage (Kilobytes)

Figure 7. RTI Process Memory Usage.

6.0 CONCLUSIONS
The results from the study indicate that the use of
filter spaces does reduce the amount of reflected data
in a system. Although, the results are derived from a
single scenario, they do show promise as a way of
reducing the amount of network traffic required for a
large distributed exercise. Further investigations will
address more complex scenarios which include fast
moving entities and wide-area viewers(WAVs).

The results from the study into the impact of filtering
on system resource utilization are not as conclusive,
and further experimentation and data analysis in this
area is necessary.

Other areas of interest include examining other
filtering schemes (source based, destination-based),
examining the performance of using actual
simulations (e.g. ModSAF), examining the behavior
of the RTI over longer scenarios, and examining the
performance on other host architectures. Some of this
work has been performed or is underway in the HLA
testbed, including experimentation with an HLA
integration of ModSAF and the RTI.

7.0 Acknowledgments
The authors would like to thank Dave Meyer, Mike
Mazurek, Gordon Miller, Jeff Pace, Russ Richardson,
Dan Van Hook and Sudhir Srinivasan for their
contributions to this project.

8.0 REFERENCES
[1] Defense Modeling and Simulation Office,
“Department of Defense High Level Architecture
Interface Specification”, Version 0.4, 7 March, 1996.

[2] Van Hook, D., “Filter Spaces for RTI Declaration
Management”. White paper ASD-15-084, 15th
Workshop on Standards for Interoperability of
Defense Simulations, Orlando FL, September 1996.

[3] Van Hook, D. and Rak, Steven, “Evaluation of
Grid-Based Relevance Filtering for Multicast Group
Assignment”. White paper ASD-96-106, 14th
Workshop on Standards for Interoperability of
Defense Simulations, Orlando FL, March 1996.

[4] Briggs, R. and Miller, G., “The JPSD
Experiment Common Software”, White paper ASD-
15-095, 15th Workshop on Standards for
Interoperability of Defense Simulations, Orlando FL,
September 1996.

[5] Mellon, Larry F. “Intelligent Addressing and
Routing of Data Via the RTI Filter Constructs”,
White Paper ASD-96-096, 15th Workshop on
Standards for Interoperability of Defense Simulations,
Orlando FL, September 1996.

9.0 ABOUT THE AUTHORS
Jeff Olszewski is a senior computer scientist in the
Simulation Technology Division of SAIC, and is
currently working in support of the Synthetic Theater
of War (STOW) program. He received his B.Sc.
degree in computer science from the University of
Pittsburgh, and will complete his M. Sc. in
Computer Science from George Washington
University in 1997.

Richard A. Briggs is a Systems Engineer with
Virtual Technology Corporation. He received his
B.Sc. in Computer Science from the Pennsylvania
State University. He is currently the VTC lead for
the RTI Integrated Product Team which is tasked to
productize the RTI for the 1.0 release. He was the
lead engineer for the JPSD Experiment and the
Federation Common Software.

Larry Mellon is a senior computer scientist and
branch manager with Science Applications
International Corporation(SAIC). He received his
B.Sc. degree from the University of Calgary. His
research interest include parallel simulation and
distibuted systems. He is a lead architect for the
ARPA funded Synthetic Theater of War Program.

